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ABSTRACT  

Background & Aims: Idiosyncratic drug-induced liver injury (DILI) is a complex 

and unpredictable event caused by drugs, herbal or dietary supplements. Early 

identification of human hepatotoxicity at preclinical stages remains a major 

challenge, in which the selection of validated in vitro systems and test drugs has 

a significant impact. This systematic review analyzed the compounds used in 

hepatotoxicity assays and established a list of DILI positive and negative control 

drugs for validation of in vitro models of DILI, supported by literature and clinical 

evidence and endorsed by an expert committee from COST Action ProEuroDILI 

Network (CA17112). 

Methods: Following 2020 PRISMA guidelines, original research articles focusing 

on DILI which used in vitro human models and performed at least one 

hepatotoxicity assay with positive and negative control compounds, were 

included. Bias of the studies was assessed by a modified ‘Toxicological Data 

Reliability Assessment Tool’.  

Results: 51 studies (out of 2,936) met the inclusion criteria, with 30 categorized 

as reliable without restrictions. Although there was a broad consensus on positive 

compounds, the selection of negative compounds lacked clarity. 2D monoculture, 

short exposure times and cytotoxicity endpoints were the most tested, although 

there was no consensus on the drug concentrations. 

Conclusions: The extensive analysis highlighted the lack of agreement on 

control compounds for in vitro DILI assessment. Following comprehensive in vitro 

and clinical data analysis together with input from the expert committee, an 

evidence-based consensus-driven list of 10 positive and negative drugs is 
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proposed for validating in vitro models for improving preclinical drug safety testing 

regimes. 

 

IMPACT AND IMPLICATIONS 

Prediction of human toxicity early in the drug development process remains a 

major challenge. For this, human in vitro models are becoming increasingly 

important, however, the development of more physiologically relevant liver 

models and careful selection of control DILI+ and DILI- drugs are requisites to 

better predict DILI liability of new drug candidates. Thus, this systematic study 

holds critical implications for standardizing validation of new in vitro models for 

studying drug-induced liver injury (DILI). By establishing a consensus-driven list 

of positive and negative control drugs, the study provides a scientifically justified 

framework for enhancing the consistency of preclinical testing, thereby 

addressing a significant challenge in early hepatotoxicity identification. The 

results are of paramount importance to all the actors involved in the drug 

development process, offering a standardized approach to assess hepatotoxic 

risks. Practically, these findings can guide researchers in evaluating safety 

profiles of new drugs, refining in vitro models, and informing regulatory agencies 

on potential improvements to regulatory guidelines, ensuring a more systematic 

and efficient approach to drug safety assessment.  
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GRAPHICAL ABSTRACT 

 

  

Jo
urn

al 
Pre-

pro
of



8 
 

INTRODUCTION 

Idiosyncratic drug-induced liver injury (DILI) encompasses liver damage caused 

by conventional medicines together with herbal and dietary supplements [1].  The 

mechanisms of toxic liver injury can be divided into at least five main categories: 

reactive metabolites, mitochondrial dysfunction, transporter inhibition, lysosomal 

impairment, and immune-mediated toxicity [2]. DILI constitutes one of the leading 

causes of drug attrition in clinical trials, use restriction, or withdrawal from the 

market [3].  

Failure to predict hepatotoxicity in the drug development process is mainly due 

to the lack of human-relevant preclinical in vitro models as well as interspecies 

differences with animal models, resulting in poor preclinical to clinical translation. 

This is compounded by the multifactorial nature of DILI pathophysiology [1]. The 

development of more sophisticated human predictive in vitro models, and 

technologies including in silico approaches has thus become a priority in pharma 

and basic research to address hepatotoxicity risk, both in an accurate and 

accelerated fashion in the drug development process [4]. 

Predictive in vitro models for hepatotoxicity assessment must be of relevance not 

only at the physiological level but also of significance to pharmacological and 

pathological contexts [4]. A tiered approach considering not only the in vitro 

human models selected but also their phenotypic characterization, as well as 

pharmacological and toxicological functionality, is needed to validate new testing 

systems [5, 6]. Here, the lack of consensus about the selection of the most 

appropriate, context-specific in vitro human liver model, critical endpoints to 

analyze, number and type of control compounds to test, concentration, as well as 

time of exposure, contributes significantly towards the observed heterogeneity 
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and lack of reproducibility in results obtained in different studies [6, 7]. Several 

studies have also highlighted the critical importance of selecting a standardized 

set of prototypic hepatotoxic compounds with diverse toxicity mechanisms to 

validate proof-of-concept studies [8]. Moreover, pharmaceutical companies are 

actively engaged in applying, for example, standardized microphysiological 

systems for drug risk assessment [9]. 

When developing a new in vitro liver model, the study requirements determine its 

characteristics, in which the human cell type and tissue architecture are important 

initial considerations [4-6]. At a later stage, to assess the relevance of the chosen 

model for the study requirements, different endpoints can be applied, ranging 

from measurements of cell death up to more functional and mechanistic pre-cell 

death endpoints, reflecting the complex nature of DILI involving multiple 

mechanisms [10].  

As for prototypic hepatotoxic compound selection, learning from drugs that either 

failed or were approved is an asset to test the expected hepatic response and 

the known mechanisms of DILI in a new in vitro system. Herein, we conducted a 

systematic review to summarize control compounds used in predictive in vitro 

human DILI models, excluding those using preclinical in vivo systems. We also 

performed a deeper analysis of the drugs most frequently used as positive and 

negative controls for DILI in the literature to develop a unified list of control 

compounds encompassing DILI-positive and DILI-negative control drugs. These 

findings were supported by a stringent literature-based review, using PRISMA 

guidelines, validated with clinical evidence and endorsed by a consensus 

committee of experts from the ProEuroDILI Network (CA 17112). 
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MATERIAL AND METHODS 

Study Design and Search Strategy 

This systematic review was conducted and reported following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 

guidelines [11]. The protocol for the systematic review was registered in the Open 

Science Framework (OSF) Registries platform (osf.io/yp7g6). There were no 

deviations from the registered protocol. 

Eligible literature published up to June 1st, 2022, was identified through a search 

in PubMed, Embase, Web of Science (WoS), and Scopus, with no language 

restrictions. The search strategy was designed based on identifying three terms: 

‘DILI’, ‘in vitro models’, and ‘predictivity’. According to this strategy, the search 

comprised the following terms and Boolean operators: ‘DRUG*’ AND (‘LIVER 

INJURY’ OR ‘HEPATOTOX*’) AND (‘PREDICT’ OR ‘IN VITRO’ OR ‘TEST*’) AND 

(‘SPECIFICITY’ AND ‘SENSITIVITY’). To retrieve additional studies eligible for 

inclusion, references cited by the included studies, narrative or systematic 

reviews, and meta-analyses identified throughout the literature search were 

manually reviewed. The retrieved literature was managed using the Rayyan 

online tool [12]. 

 

Inclusion and exclusion criteria 

Published studies that fulfilled the following criteria were included:  

1. To be a peer-reviewed original article. 

2. To study the onset of DILI in preclinical stages. 
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3. To report at least one hepatotoxicity assay using in vitro human models, 

aiming to classify at least one drug in each of the following categories: DILI 

concern (DILI+) or no DILI concern (DILI-).  

4. To report data about the model's predictive power, with sensitivity and 

specificity values (either quantitative or qualitative). 

 

Studies conducted using in vivo models, and reviews, editorials, letters, 

commentaries, conference abstracts, and other reports with no relevant data 

were excluded. If the full text could not be accessed, it was searched via inter-

library loan or the corresponding authors were contacted to request a copy. If the 

study could not be retrieved, it was finally excluded. 

 

Study selection 

The literature search was conducted by four independent researchers, who 

screened the title and abstract and retrieved and reviewed the full text of the 

relevant studies identified. Any disagreements were resolved by discussion, 

whilst a 5th independent researcher was consulted if a consensus needed to be 

reached.  

 

Data extraction 

After literature screening, the following data were extracted from each of the 

included studies: full name of the first author, year of publication, the model(s) 

used to perform the hepatotoxicity assay, drugs tested and their DILI 

categorization, drug concentration(s), toxicity endpoint(s) measured, and 

specificity and sensitivity values. For the analysis, all the drugs were classified in 
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the categories DILI+ and DILI-. To do so, in the studies where a binary 

categorization was not used, only the negative controls used for the 

hepatotoxicity assays and the model predictivity estimation were indexed as DILI-

. The positive controls were classified as DILI+ regardless of their severity 

category. Corresponding authors were contacted to obtain further information if 

required. 

 

Quality assessment 

Based on the software-based ‘Toxicological data Reliability assessment Tool’ 

(ToxRTool) [13] and following published recommendations [14], a refined tool 

named ‘Modified ToxRTool’ was generated to assess the risk of bias in the 

included articles. The ‘Modified ToxRTool’ provides comprehensive criteria for 

determining the reliability of toxicological studies. Studies were evaluated in five 

domains: i) ‘Test substance identification’; ii) ‘Test system characterization’; iii) 

‘Study design description’; iv) ‘Study results documentation’; and v) ‘Plausibility 

of study design and data’. Each domain item was scored with 0, 0.5, or 1 point, 

following the recommendations of Segal D. et al. [14]. After the evaluation, 

categories of reliability proposed by Klimisch et al. [15], i.e., code 1 (reliable 

without restrictions), code 2 (reliable with restrictions), code 3 (not reliable), and 

code 4 (not assignable), were assigned to each domain (see Figures 1 and 2). 

Ten researchers independently conducted the quality control assessments. 

Three independent researchers evaluated each study and the mean score for 

each category was calculated based on the assessment of their assessment. 

Studies with a score of 15-18 points were classified as reliable without 

restrictions, being useful for the analysis; 11-14 points studies were classified as 
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reliable with restrictions, being potentially useful for the analysis; <11 points 

studies were classified as not reliable and were not considered further. 

 

Data analysis 

Data on the different models, drugs and conditions used to perform the toxicity 

assays and sensitivity and specificity values were analyzed. Other aspects of the 

toxicological assays were scored, such as the number of times each model and 

specific spatial configurations (2D, 3D) were used, how long the models were 

exposed to the drugs, or which concentrations were tested. However, the 

heterogeneity in the study design concerning cell types, model configurations, 

and the number of DILI+ and DILI- compounds analyzed, along with the wide 

range in exposure times and concentrations, prevented conducting a meta-

analysis. 

A full list showing all drugs and the number of articles where they appeared as 

positive or negative controls was created (Supplementary Material 1). 

 

Drug analysis 

Drugs most commonly used as positive and negative controls in the included 

literature were selected for examination. At least one hundred drugs from each 

category, DILI+ and DILI-, were extensively analyzed (Supplementary Material 

2). If there were additional drugs with the same number of occurrences in the 

articles beyond the hundredth drug for positive and negative controls, such drugs 

were included in the analysis, expanding the list as necessary. The classification 

of the drugs based on the pharmacological group was extracted from the 

ATC/DDD index 2023 [16].  
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Clinical use cases | Databases 

For the number of clinical cases reported per each drug, four DILI databases 

were analyzed: the Spanish DILI Registry [17] with 980 cases, the Pro-Euro-

DILI Registry [18] with 246 cases, the DILI Network (DILIN) [19] with 899 cases 

and the LATINDILI Network [20] with 480 cases. The DrugBank database [21] 

was used to ascertain if a drug was withdrawn, and the reason for withdrawal. 

The Liver Toxicity Knowledge Base (LTKB) [22] was used to ascertain: The 

severity class, drug label, and DILI concern, which were then obtained from the 

DILIRank list [23]. The classification as DILI+ was extracted from the DILIst [24]. 

In addition, several of the toxicity properties (mitochondrial liability and reactive 

metabolite formation), pharmacokinetic properties (half-life, lipophilicity, plasma 

protein binding, enterohepatic circulation and hepatic metabolism), and the 

Biopharmaceutics Drug Disposition Classification System (BDDCS) class were 

also extracted from the LKTB. The DILI injury type and toxicity mechanism(s) of 

the drug were obtained from the Liver Toxicity (LiverTox) Database [25], whilst 

physicochemical properties, metabolic pathway and enzymes implied were taken 

from DrugBank [21]. 

 

Establishment of a unified list of 10 DILI+ and 10 DILI– control compounds  

After revising the different control drugs used in the articles, clinical data from 

DILI cases, physicochemical, pharmacokinetic, and toxicological characteristics 

along with the contribution of a panel of DILI experts, a list of control DILI 

compounds was created. The DILI experts panel comprised members of the 

ProEuroDILI Network (CA 17112). To be included in the list, drugs were required 

to be sufficiently explored in both the selected studies and clinical databases and 
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represent all major types of liver injury phenotypes and drug metabolism. After 

the selection of a potential list of DILI+ and DILI- drugs, the DILI expert panel 

convened to reach a consensus on the appropriateness of these drugs, drawing 

on their extensive knowledge in both clinical and preclinical DILI.  

 

RESULTS 

Literature search 

The search strategy retrieved 2,936 studies. Of these, 1,341 were duplicate 

records. After screening the title and abstract, 1,923 studies were excluded. The 

main reasons for exclusion were: i) The study of a condition other than DILI 

(75%); ii) Not studying hepatotoxicity in in vitro human models (17.1%), and iii) 

Not being an original article (7.9%). The full texts of the remaining 125 articles 

were assessed for eligibility, with 67 studies excluded, mainly due to lack of DILI 

studies in in vitro human models and absence of hepatotoxicity assays. 

Furthermore, 8 articles were excluded due to a drug bias selection. Ultimately, 51 

articles [26-76] that met the stringent inclusion criteria were included for in-depth 

analysis and systematic review (Figure 1). 

 

Study characteristics 

A summary of the main characteristics of the 51 articles that fully met the inclusion 

criteria is shown in Supplementary Material 3. The relevant features assessed 

were the type of in vitro human model, the study context, the DILI control drugs 

used (concentrations and time of exposure), the endpoints studied and the 

respective predictivity of the system. 
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Reliability of the studies 

The quality and reliability of all 51 publications assessed using the Modified 

ToxRTool are shown in Figure 2. Most studies were considered reliable without 

restrictions regarding test substance identification (69%), test system 

characterization (84%), study design description (81%), results documentation 

(81%), and plausibility of the study design and data (100%). Based on these 

parameters, most of the studies were categorized as reliable without restrictions 

(59%). The remaining studies were categorized as reliable with restrictions 

(41%), being potentially useful. Importantly, no article was classified as not 

reliable.  

 

DILI categorization 

Among the 51 articles included, 43 studies (84%) classified the drugs using a 

simple binary categorization, namely, DILI-positive (DILI+) versus DILI-negative 

(DILI-). In contrast, 7 studies (14%) used a tertiary categorization, e.g., Most-, 

Less- or No-DILI-concern, while only 1 (2%) used further categorization 

(Supplementary Material 3). 

 

DILI control drugs 

The applicability of the in vitro model depends largely on the number of tested 

DILI+ and DILI- controls. A list of all drugs used in the 51 articles is presented in 

Supplementary Material 1.  

Supplementary Material 2 summarizes the characteristics of the 104 DILI+ and 

123 DILI- drugs that were most commonly used in the 51 studies analyzed. 

Diclofenac (45 studies; 88%) and buspirone (25 studies; 49%) were the most 
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widely investigated DILI-positive and DILI-negative drugs, respectively. 

Nevertheless, a wide heterogeneity was found in the DILI- categorization, which 

a priori stems from the fact that some articles consider Less-DILI-Concern drugs 

as DILI-, despite being classified as potentially hepatotoxic. 

The LTKB gathers diverse datasets for DILI assessment and prediction. We 

therefore evaluated the distribution of DILI labelling and severity among the drugs 

studied (Figure 3). Out of 104 DILI+ control drugs analyzed, 66 drugs were 

categorized as Most-DILI-Concern and 29 as Less-DILI-Concern. On the other 

hand, within the 123 DILI- control drugs, 59 drugs were categorized as No-DILI-

Concern, 33 as Less-DILI-Concern and 13 as Ambiguous-DILI-Concern. Of note, 

two drugs used as DILI- (2%), levofloxacin and atorvastatin, present Most-DILI-

Concern and were used both as DILI+ and DILI- controls.  

 

DILI Registries 

When examining cases of hepatotoxicity for the analyzed drugs across various 

DILI registries, the Spanish DILI Registry had a higher number of reported cases 

for DILI+ drugs (53%) compared to DILI- drugs (20%). Conversely, the Pro-Euro-

DILI Registry has the fewest reported cases for both DILI+ (29%) and DILI- (19%) 

drugs (Supplementary Material 2). Nevertheless, these differences could be 

explained, in part, by the differences in the causative drugs among registries, 

being more frequent biological and immunosuppressants in recent times.  

 

In vitro human models 

Factors such as the cell type(s) and the number of different model formats used 

in each study constitute essential features when evaluating the model’s 
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predictivity. Figure 4 and Supplementary Material 4 show the different cellular, 

non-cellular models and culture conditions tested. The majority consisted in 

human primary hepatocytes (PHHs) and 2D culture configurations. A more 

detailed analysis of advantages, relevance and limitations of preclinical models 

for predicting DILI is provided in a recent review [4]. 

 

Drug concentration, time of exposure and endpoints evaluated 

When deciding the optimal conditions for in vitro hepatotoxicity testing, important 

parameters to be taken into account include drug concentration (e.g., multiples 

of Cmax), time of exposure (e.g., acute or chronic) and endpoints (e.g., cytotoxicity 

or mechanistic endpoints). Herein, great variation in all these parameters was 

observed in the studies analyzed (Figure 5, Supplementary Material 3, 5 and 

6). 

 

Predictive capacity 

Extensive variability was found when analyzing data related to the predictive 

capacity of the different models (Supplementary Material 7). For example, the 

number of drugs used to determine the predictive ability of a model varied among 

all the articles analyzed, with some using different numbers depending on the 

model [72], the model and the endpoint [47, 57], or the cutoff used [55].  

 

Proposed Control Drugs: 10 DILI+ and 10 DILI– compounds 

After extensive analysis of all drugs examined in this study, including their 

physicochemical, pharmacokinetic/pharmacodynamic characteristics, mode of 

action (MoA) and toxicity, a list of 10 DILI+ and 10 DILI- drugs was established 
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to assist in validation of in vitro DILI systems, applicable to both current and next-

generation advanced preclinical human in vitro systems (Figure 6, 

Supplementary Material 8 and 9). 

During the control compounds selection, additional features were further explored 

to find the most suitable ones. These included metabolic pathways, mechanisms 

of toxicity, and pharmacological therapeutic class (Supplementary Material 8 

and 9).  

Virtually, all phase I enzymes involved in the selected DILI+ drugs 

biotransformation (excluding CYP2C18, CYP2J2M, FMO1, and FMO3) are also 

involved in the selected DILI- drugs metabolism. However, this is not the case for 

phase II enzymes, since the DILI- control drugs undergo minimal phase II 

metabolism (via UGT, COMT, and GSTP enzyme families).  

Moreover, different mechanisms of hepatotoxicity are represented within the 

DILI+ controls list, such as immune-allergic toxicity (e.g., diclofenac), 

mitochondrial dysfunction (e.g., amiodarone), cholestatic liver injury (e.g., 

danazol), amongst others. 

Regarding drug concentrations tested for each drug, the most frequently used 

are multiples of the maximum plasma concentration (Cmax). Finally, given that not 

all studies analyzed use the same Cmax, a simplified distribution of Cmax 

concentrations was determined for these 20 drugs (Figure 7).  

 

DISCUSSION 

Early prediction of human toxicity in the drug development process remains a 

major challenge. This systematic review principally addresses the lack of a 

standardized panel of training compounds (DILI-positive and DILI-negative 
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drugs), which would allow appropriate and more robust validation of human in 

vitro liver models for hepatotoxicity studies.  

The analysis performed has raised several paradoxical classifications of various 

drugs. Acetylsalicylic acid, a commonly used non-steroidal anti-inflammatory 

drug (NSAID), constitutes a drug categorized as Less-DILI-Concern by the LTKB 

but also presents some clinical DILI cases reported within the Spanish DILI 

Registry [17]. Interestingly, in the studies reviewed, this drug is widely used as 

both a DILI- and DILI+ control. Other drugs such as fluoxetine, warfarin, 

alendronic acid, entacapone, or metformin also share this confounding feature. 

This raises a concern regarding whether an Ambiguous-/ or Less-DILI-Concern 

drug should be used as a DILI- control compound. When defining a panel of 

control drugs, it is essential to have different categories within DILI+ drugs to 

cover not only severe but also mild hepatotoxicity effects, i.e., to have drugs 

categorized as Most-DILI-Concern and Less-DILI-Concern. However, when 

defining true DILI- controls, the drugs should not have any propensity to cause 

DILI, i.e., only No-DILI-Concern drugs should be included. Moreover, DILI- 

compounds must not bear any clinical cases within the DILI registries. 

The initial aim of our review of literature-reported DILI studies was to propose a 

consensus list of DILI+ and DILI- drugs to validate human in vitro DILI models. 

The list evolved after conducting an extensive analysis of all the drugs and model 

systems examined in this study. This included data from clinical cases of DILI 

caused by the same drugs under analysis herein, along with their 

physicochemical, pharmacokinetic, and toxicological characteristics. Additionally, 

a panel of experts in the field of DILI (ProEuroDILI Network, CA 17112) was 
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convened to provide expertise and critical input on the proposed list. To our 

knowledge, this is the first systematic review that brings together all these data. 

 

DILI+ Control Drugs 

DILI+ drugs were the initial focus, identifying ten drugs fulfilling the established 

criteria and conditions. Firstly, the drugs were required to have been significantly 

used in both the selected studies and, importantly, also in clinical databases. 

Additionally, it was crucial for the drugs chosen to accurately represent all major 

types of liver injury sub-types (hepatocellular, cholestatic, or mixed), modes of 

drug metabolism and belong to either Most- or Less-DILI-Concern groups. Next, 

we assessed aspects of drug metabolism, mechanisms of toxicity, and 

pharmacological properties of the selected DILI control compounds (the list of 

DILI+ drugs is displayed in Figure 6, in red, and their main characteristics are 

shown in Supplementary Material 8). 

 

DILI- Control Drugs 

For selecting DILI- drugs, a series of pre-established criteria were followed. First, 

the selected drugs should be metabolized to the greatest extent by the same 

phase I and II enzymes as the DILI+ drugs. Additionally, these drugs should not 

have reported occurrences as DILI+ in the literature, be classified as severity 

class 0 in the LTKB, and be considered No-DILI-Concern (Figure 6, in green, 

and Supplementary Material 9). 

 

Recommended concentrations to use for each drug included in the list were 

derived exclusively from the literature (Table 1). These concentrations were 
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selected based on the most used Cmax value for each drug tested. In the case that 

the same number of articles use different concentrations for the DILI- drugs, the 

highest value is proposed. 

 

Of note, as the use of in vivo models was part of the exclusion criteria of the 

present study, the suitability of these control compounds to validate DILI animal 

models should be further analyzed. 

 

CONCLUSION 

Given the multifactorial, complex nature of idiosyncratic DILI, no single system 

has yet emerged as a universal preclinical testing platform. Moreover, there is a 

clear and unmet need for consensus on the reference drugs to be used to validate 

DILI assays, recommendations about the concentrations to test and criteria for 

interpreting the data. This systematic study proposes an evidence-based, 

consensus-driven, unified list of 10 positive and 10 negative control drugs to 

provide benchmarking, continuity and reproducibility in the validation of human in 

vitro models for improving preclinical drug safety testing studies. From an initial 

corpus of nearly 3,000 literature-based studies, only 51 met the rigorous inclusion 

criteria to achieve this goal based on PRISMA guidelines. In addition, we report 

tremendous variation in the types of human in vitro DILI models used, for 

example, across cell choice and culture formats (2D monolayers to 3D multi-

cellular cultures) and conditions (medium formulations; extracellular matrix 

configuration). Together with the lack of concordance due to interspecies 

differences between animal models with human DILI, a paradigm shift is required 

to develop models with human-relevant biological variation and complexity, which 
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can lead to a better understanding of mechanistic and predictive DILI signals. 

Therefore, cross-validation of at least 2-3 human in vitro models with both animal 

models and clinical data and integration using artificial intelligence (AI) 

approaches should form part of the standard operating procedure for DILI 

prediction in the future. Applying appropriate DILI+ and DILI- control compounds 

to test these systems would provide added value in terms of validation, 

benchmarking and improving relevance of the model to evaluate drug toxicity as 

well as pharmacologic effects. 
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Tables 

Table 1. Suggested Cmax concentrations of DILI+ and DILI- control 

compounds. 

Control Compound Suggested Cmax (µM) 

DILI+  

Diclofenac 8 

Troglitazone 6.4 

Amiodarone 5.3 

Ketoconazole 11.3 

Tamoxifen 0.2 

Chlorpromazine 0.9 

Isoniazid 76.6 

Valproate 693.4 

Imipramine 0.1 

Danazol 0.1 

DILI-  

Diphenhydramine 0.34 

Isoproterenol 2.4 

Caffeine 77.24 

Primidone 4.77 

Streptomycin 74.5 

Oxybutynin 0.02 

Lidocaine 36 

Loperamide 0.08 
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Pyridostigmine 1.1 

Tolterodine 0.04 
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Figure legends 

 

Fig. 1. Flow chart of the literature review strategy.  

 

Fig. 2. Individual (A) and overall (B) quality assessment of the 51 included 

publications. 1 (green), reliable without restrictions; 2 (yellow), reliable with 

restrictions; 3 (red), not reliable. 

 

Fig. 3. Classification of DILI positive (A) and DILI negative (B) drugs in the 51 

analyzed studies according to DILI concern, safety information in drug labelling 

and regulatory action. 

 

Fig. 4. Use of different types of in vitro human cell models in the 51 included 

studies.  

2D, two-dimensional; 3D, three-dimensional; HLCs, hepatocyte-like cells; iPSCs, 

induced pluripotent stem cells; PBMCs, peripheral blood mononuclear cells; 

PHHs, human primary hepatocytes; THLEs, transformed human liver epithelial 

cells. 

 

Fig. 5. Different assay readouts used in the 51 included studies. (A) Percentage 

of studies that use each endpoint category. (B) Percentage of studies that use 1 

to 8 different endpoints. 

ROS, reactive oxygen species. 
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Fig. 6. List of the 10 DILI+ and 10 DILI- drugs selected as positive (red) and 

negative (green) control compounds to validate new in vitro models. 

 

Fig. 7. Distribution of the different Cmax used in all studies. The graphs represent 

the distribution range and the median of the data. Descriptive statistics are also 

provided for each drug. (A) shows DILI+ drugs and (B) shows DILI- drugs. 

Cmax, maximum drug concentration in blood. 
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Figures 
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Table 1. Suggested Cmax concentrations of DILI+ and DILI- control 

compounds. 

Control Compound Suggested Cmax (µM) 

Diclofenac 8 

Troglitazone 6.4 

Amiodarone 5.3 

Ketoconazole 11.3 

Tamoxifen 0.2 

Chlorpromazine 0.9 

Isoniazid 76.6 

Valproate 693.4 

Imipramine 0.1 

Danazol 0.1 

Diphenhydramine 0.34 

Isoproterenol 2.4 

Caffeine 77.24 

Primidone 4.77 

Streptomycin 74.5 

Oxybutynin 0.02 

Lidocaine 36 

Pyridostigmine 1.1 

Tolterodine 0.04 
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Highlights: 
• Identification of DILI during preclinical stages remains challenging, underscoring 

the need for appropriate test drugs 

• Through a systematic review, the article analyzes compounds used in in vitro 
hepatotoxicity assays 

• A list of 20 control drugs, supported by literature, clinical data and an experts 
committee was created 

• The consensus-driven list aims to enhance the validation and standardization of 
in vitro models 
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